Label Fusion Strategy Selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Label Fusion Strategy Selection

Label fusion is used in medical image segmentation to combine several different labels of the same entity into a single discrete label, potentially more accurate, with respect to the exact, sought segmentation, than the best input element. Using simulated data, we compared three existing label fusion techniques-STAPLE, Voting, and Shape-Based Averaging (SBA)-and observed that none could be cons...

متن کامل

Classifier Selection Strategies for Label Fusion Using Large Atlas Databases

Structural segmentations of brain MRI can be generated by propagating manually labelled atlas images from a repository to a query subject and combining them. This method has been shown to be robust, consistent and increasingly accurate with increasing numbers of classifiers. It outperforms standard atlas-based segmentation but suffers, however, from problems of scale when the number of atlases ...

متن کامل

Spectral Label Fusion

We present a new segmentation approach that combines the strengths of label fusion and spectral clustering. The result is an atlas-based segmentation method guided by contour and texture cues in the test image. This offers advantages for datasets with high variability, making the segmentation less prone to registration errors. We achieve the integration by letting the weights of the graph Lapla...

متن کامل

Efficient Multi-Label Feature Selection Using Entropy-Based Label Selection

Abstract: Multi-label feature selection is designed to select a subset of features according to their importance to multiple labels. This task can be achieved by ranking the dependencies of features and selecting the features with the highest rankings. In a multi-label feature selection problem, the algorithm may be faced with a dataset containing a large number of labels. Because the computati...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Biomedical Imaging

سال: 2012

ISSN: 1687-4188,1687-4196

DOI: 10.1155/2012/431095